31.6-1
Draw a table showing the order of every element in Z11∗. Pick the smallest primitive root g and compute a table giving ind11,g(x) for all x∈Z11∗.
g=2, {1,2,4,8,5,10,9,7,3,6}.
31.6-2
Give a modular exponentiation algorithm that examines the bits of b from right to left instead of left to right.
| MODULAR-EXPONENTIATION(a, b, n)
i = 0
d = 1
while (1 << i) ≤ b
if (b & (1 << i)) > 0
d = (d * a) % n
a = (a * a) % n
i = i + 1
return d
|
31.6-3
Assuming that you know ϕ(n), explain how to compute a−1modn for any a∈Zn∗ using the procedure MODULAR-EXPONENTIATION.
aϕ(n)a⋅aϕ(n)−1a−1≡≡≡11aϕ(n)−1(modn),(modn),(modn).