We can apply the iteration operator ^* used in the lg\lg^* function to any monotonically increasing function f(n)f(n) over the reals. For a given constant cRc \in \mathbb R, we define the iterated function fc{f_c}^* by fc(n)=min{i0:f(i)(n)c}{f_c}^*(n) = \min \{i \ge 0 : f^{(i)}(n) \le c \} which need not be well defined in all cases. In other words, the quantity fc(n){f_c}^*(n) is the number of iterated applications of the function ff required to reduce its argument down to cc or less.

For each of the following functions f(n)f(n) and constants cc, give as tight a bound as possible on fc(n){f_c}^*(n).

f(n)cfcn10Θ(n)lgn1Θ(lgn)n/21Θ(lgn)n/22Θ(lgn)22Θ(lglgn)21does not convergen1/22Θ(log3lgn)n/lgn2ω(lglgn),o(lgn) \begin{array}{ccl} f(n) & c & {f_c}^* \\ \hline n - 1 & 0 & \Theta(n) \\ \lg n & 1 & \Theta(\lg^*{n}) \\ n / 2 & 1 & \Theta(\lg n) \\ n / 2 & 2 & \Theta(\lg n) \\ \sqrt 2 & 2 & \Theta(\lg\lg n) \\ \sqrt 2 & 1 & \text{does not converge} \\ n^{1 / 2} & 2 & \Theta(\log_3{\lg n}) \\ n / \lg n & 2 & \omega(\lg\lg n), o(\lg n) \end{array}